INTERRO N°8 — CORRIGÉ (SUJET A)

1) Compléter cette définition : $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel si (E, +) est un groupe abélien et si les assertions suivantes sont vérifiées :

Cf cours. Attention, si $\alpha, \beta \in \mathbb{K}$ et $u \in E$, il est faux d'écrire : $u(\alpha + \beta) = u\alpha + u\beta$: le scalaire s'écrit toujours à gauche du vecteur, car la loi « point » est définie comme · : $\mathbb{K} \times E \to E$. Le scalaire est donc toujours en première position.

2) Soit E un \mathbb{K} -e.v., $n \in \mathbb{N}^*$ et $u_1, \dots, u_n \in E$. Donner la définition en termes d'ensemble de $\text{Vect}(u_1, \dots, u_n)$. Sous quelle condition est-ce que (u_1, \dots, u_n) est une famille génératrice de E?

Cf cours. Pour la deuxième question, on attendait $Vect(u_1, \dots, u_n) = E$.

3) Est-ce que $E=\left\{f\in\mathbb{R}^{\mathbb{R}}\mid f \text{ est monotone}\right\}$ est un \mathbb{R} -e.v. ? Justifier.

Non, ce n'est pas un s.e.v. car E n'est pas stables par somme : les fonctions $f: x \mapsto \begin{cases} x^2 & \text{si } x < 0 \\ 0 & \text{si } x \geq 0 \end{cases}$ et $g: x \mapsto \begin{cases} 0 & \text{si } x < 0 \\ x^2 & \text{si } x \geq 0 \end{cases}$ sont des éléments de $\mathbb{R}^{\mathbb{R}}$ et sont monotones, d'où $f,g \in E$. Cependant, leur somme est la fonction $x \mapsto x^2$ qui n'est pas monotone.

INTERRO N°8 — CORRIGÉ (SUJET B)

1) Soit E un \mathbb{K} -e.v. et $F \subset E$. Donner une caractérisation (pas une définition) de l'assertion « F est un s.e.v. de E ».

Cf cours.

2) Soit E un \mathbb{K} -e.v., $n \in \mathbb{N}^*$ et $u_1, \dots, u_n \in E$. Donner la définition de « (u_1, \dots, u_n) est une famille libre ».

$$\forall \alpha_1, \cdots, \alpha_n \in \mathbb{K} \qquad \left(\sum_{i=1}^n \alpha_i u_i = 0_E \implies \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0\right)$$

Attention à bien introduire les α_i avec le bon quantificateur.

3) Est-ce que $E = \{(x,y) \in \mathbb{R}^2 \mid y = x^2\}$ est un \mathbb{R} -e.v. ? Justifier.

Non : par exemple (1,1) et (-1,1) sont clairement des éléments de E. En revanche leur somme (0,2) n'est pas dans E car $2 \neq 0^2$.